欢迎您来到奇趣后备箱! 手机访问: > 热文摘录 > 美文摘录 > 光刻机原理:一文看懂asml光刻机工作原理及基本构造网站地图

美文摘录

光刻机原理:一文看懂asml光刻机工作原理及基本构造

松本まりか来自:陕西省 咸阳市 永寿县 时间:2020-05-06 16:32:03 坐标: 340214°

精选的光刻机原理:一文看懂asml光刻机工作原理及基本构造

  在半导体芯片制造设备中,投资最大、也是最为关键的是光刻机,光刻机同时也是精度与难度最高、技术最为密集、进步最快的一种系统性工程设备。光学光刻技术与其它光刻技术相比,具有生产率高、成本低、易实现高的对准和套刻精度、掩模制作相对简单、工艺条件容易掌握等优点,一直是半导体芯片制造产业中的主流光刻技术。目前,国际上半导体芯片制造生产线上的主流光刻设备是248nm(KrF)准分子激光投影光刻机,并正在向193nm(ArF)准分子激光投影光刻机过渡。荷兰ASML公司作为全球三大光刻机集成生产商之一,坚持不懈地进行技术创新以增强其竞争力,在全球光刻机销售市场上居于领先地位。

  asml光刻机工作原理

  一文看懂asml光刻机工作原理及基本构造

  上图是一张ASML光刻机介绍图。下面,简单介绍一下图中各设备的作用。

  测量台、曝光台:是承载硅片的工作台。

  激光器:也就是光源,光刻机核心设备之一。

  光束矫正器:矫正光束入射方向,让激光束尽量平行。

  能量控制器:控制最终照射到硅片上的能量,曝光不足或过足都会严重影响成像质量。

  光束形状设置:设置光束为圆型、环型等不同形状,不同的光束状态有不同的光学特性。

  遮光器:在不需要曝光的时候,阻止光束照射到硅片。

  能量探测器:检测光束最终入射能量是否符合曝光要求,并反馈给能量控制器进行调整。

  掩模版:一块在内部刻着线路设计图的玻璃板,贵的要数十万美元。

  掩膜台:承载掩模版运动的设备,运动控制精度是nm级的。

  物镜:物镜用来补偿光学误差,并将线路图等比例缩小。

  硅片:用硅晶制成的圆片。硅片有多种尺寸,尺寸越大,产率越高。题外话,由于硅片是圆的,所以需要在硅片上剪一个缺口来确认硅片的坐标系,根据缺口的形状不同分为两种,分别叫flat、 notch。

  内部封闭框架、减振器:将工作台与外部环境隔离,保持水平,减少外界振动干扰,并维持稳定的温度、压力。

  在加工芯片的过程中,光刻机通过一系列的光源能量、形状控制手段,将光束透射过画着线路图的掩模,经物镜补偿各种光学误差,将线路图成比例缩小后映射到硅片上,然后使用化学方法显影,得到刻在硅片上的电路图。一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、激光刻蚀等工序。经过一次光刻的芯片可以继续涂胶、曝光。越复杂的芯片,线路图的层数越多,也需要更精密的曝光控制过程。

  一文看懂asml光刻机工作原理及基本构造

  光刻机主要技术指标

  准分子激光器扫描步进投影光刻机最关键的三项技术指标是:光刻分辨力(Resolu2tion)、套刻精度(Overlay)和产量(Produc2tivity)。

  光刻分辨力的计算公式为:

  CD=K1λ/NA

  式中λ为准分子激光器输出激光波长,K1为工艺系数因子,NA为投影光刻物镜数值孔径。从上式可以看出,提高光刻分辨力可以通过缩短激光波长、降低工艺系数因子K1和提高投影光刻物镜数值孔径NA等来实现。缩短激光波长将涉及到激光器、光学系统设计、光学材料、光学镀膜、光路污染以及曝光抗蚀剂等系列技术问题;低工艺系数因子K1值成像,只有当掩模设计、照明条件和抗蚀剂工艺等同时达到最佳化才能实现,为此需要采用离轴照明、相移掩模、光学邻近效应校正、光瞳滤波等系列技术措施;投影光刻物镜的数值孔径则与激光波长及光谱带宽、成像视场、光学设计和光学加工水平等因素有关。

  套刻精度与光刻分辨力密切相关。如果要达到0.10μm的光刻分辨力,根据33%法则要求套刻精度不低于0.03μm。套刻精度主要与工件台和掩模台定位精度、光学对准精度、同步扫描精度等因素有关,定位精度、对准精度和同步扫描精度分别约为套刻精度的1/5~1/3,即0.006~0.01μm。提高生产效率是光刻机实现产业化的必要条件。为了提高生产效率,必须优化设计激光器输出功率、重复频率、曝光能量控制、同步扫描等各个技术环节,并采用先进技术尽量减少换片、步进和光学对准等环节所需时间。

  一文看懂asml光刻机工作原理及基本构造

       主流光刻机的基本构造

  光刻机的光源是核心, EUV是下一代光刻的利刃。光刻机使用的光源有几项要求:

  有适当的波长(波长越短,曝光的特征尺寸就越小),同时有足够的能量,并且均匀地分布在曝光区。

  实现光刻进步的直接方法,是降低使用光源的波长。早期的紫外光源是高压弧光灯(高压汞灯),经过滤光后使用其中的 g线(436 nm)或 i线(365 nm)。其后采用波长更短的深紫外光光源,是一种准分子激光(Excimer laser),利用电子束激发惰性气体和卤素气体结合形成的气体分子,向基态跃迁时所产生激光,特色是方向性强、波长纯度高、输出功率大,例如 KrF (248 nm)、 ArF(193 nm)和 F2(157 nm)等。使用 193nmArF光源的干法光刻机,其光刻工艺节点可达 45nm,采用浸没式与光学邻近效应矫正等技术后,其极限光刻工艺节点可达 28nm。

 一文看懂asml光刻机工作原理及基本构造

  主流光刻机的关键组成

  首创双工作台,大幅提升生产效率。在 2000年前光刻设备,只有一个工作台,晶圆片的对准与蚀刻流程都在上面完成。公司在 2001年推出的 Twinscan双工作台系统,是行业的一大进步,使得光刻机能在一个工作台进行曝光晶圆片,同时在另外一个工作台进行预对准工作,并在第一时间得到结果反馈,生产效率提高大约 35%,精度提高 10%以上。双工件台系统虽然仅是加一个工作台,但技术难度却不容小觑,对工作台转移速度和精度有非常高的要求。阿斯麦的独家磁悬浮工件台系统,使得系统能克服摩擦系数和阻尼系数,其加工速度和精度是超越机械式和气浮式工件台。

   一文看懂asml光刻机工作原理及基本构造

  双工作台光刻设备的构造示意图

  浸没式光刻与二次曝光提升工艺能力,填补 EUV问世前的演进缺口。浸没式光刻是指在镜头和硅片之间增加一层专用水或液体,光线浸没在液体中曝光在硅晶片圆上;由于液体的折射率比空气的折射率高,因此成像精度更高。从而获得更好分辨率与更小曝光尺寸。

  2002年业界提出了 193nm浸入式光刻的设备规划,由于 193nm的光谱在水中的折射率高达 1.44(折射率越高,蚀刻精度也越好),等效波长缩短为 134nm,设备厂商只需对现有设备做较小的改造,就能将蚀刻精度提升 1-2个世代。阿斯麦首先推出 193nm的浸没式设备,效果优于 157nm光源的设备,成功将 90nm制程提升到 65nm,彻底打败选择干式蚀刻路线的尼康与佳能,是行业格局的重要转折。

  到了 2010年后,制程工艺尺寸进化到 22nm,已经超越浸没式 DUV的蚀刻精度,于是行业开始导入两次图形曝光工艺,以间接方式来制作线路;即不直接曝光管线部分,而是先曝光出两侧管壁,间接形成线路区域。两次曝光虽然能制作比光源精度更高的集成电路,但副作用是光刻次数与掩模数量大增,造成成本上升及生产周期延长,所以波长更短、精度更高的光源,才是提升制程能力的关键。对于使用浸没式+两次图形曝光的 ArF光刻机,工艺节点的极限是 10nm。 EUV光刻机可望使工艺制程继续延伸到 7nm与 5nm。

   一文看懂asml光刻机工作原理及基本构造

  浸没式光刻与二次图形曝光示意图

  半导体行业目前最大的瓶颈,在于摩尔定律的实现成本越来越大,制程微缩不再伴随晶体管单位成本同步下降。在从 32/28nm节点迈进 22/20nm节点时,由于光刻精度不足,需使用二次曝光等技术来实现,设备与制作成本双双提高,晶体管的单位成本首次出现不降反升。

  业界将希望寄托在极紫外光(EUV)微影技术,期望 EUV设备的高精度,能帮助厂商减少光刻的工序,提高 7nm以下的晶圆量产性。 2013年阿斯麦 EUV光刻设备研发成功,光源波长 22nm,技术逐步推进, 2017年的设备已采用最小 13nmEUV作为光源,超短波长使 7nm以下特征尺寸曝光得以实现。随着业界制程走向了 10nm以下,需要更高级的 EUV光刻系统,全球只有阿斯麦的 NXE系列能够满足需求。

   一文看懂asml光刻机工作原理及基本构造

  先进制程复杂度与 EUV设备效益

  EUV工艺聚集了多个领域的顶尖技术。 EUV要具备量产性,有几个技术瓶颈必须克服;首先在光源上。极紫外光的波长为 13.5nm,这种光容易被包括镜头玻璃内的材料吸收,所以需要使用反射镜来代替透镜;普通打磨镜面的反射率还不够高,必须使用布拉格反射器(Bragg reflector,一种复式镜面设计,可以将多层的反射集中成单一反射)。

  此外,气体也会吸收 EUV并影响折射率,所以腔体内必须采用真空系统。为了解决 EUV的光源问题,2012年 10月,阿斯麦斥资 19.5亿欧元,收购其关键的光学技术提供商 Cymer,加速极紫外光(EUV)相关技术的开发。公司 2017年的 EUV设备 NXE 3400B,成功提高光源功率与精度,实现约 13纳米的线宽,并且采用磁悬浮系统来加速掩模及工作台,预期吞吐量可达每小时 125片晶圆,微影迭对(overlays)误差容许度在 3纳米以内。

   一文看懂asml光刻机工作原理及基本构造

  EUV光刻与反射式镜头示意图

  在以往 DUV时期,需要以多重光罩才能实现的 7nm制程,新型 EUV系统可望只要单一光罩步骤就可完成;但在 5nm或以下的制程,还会面临多次图形曝光的问题,仍需要提高下一代 EUV设备在光源以外的能力。为此,公司在 2016年以 11亿美元收购光学大厂蔡司(CarlZeiss)的 24.9%股份,并承诺 8.4亿美元的研发投入,联手研发数值孔径(numericalaperture, NA)高于 0.5的镜头。第二代 EUV微影预计要到 2024年后量产,届时计划实现约 8纳米的线宽,每小时处理 185片晶圆,迭对误差容许度小于 2纳米。

  阿斯麦此次大手笔投资蔡司进行共同开发,显示阿斯麦对于下一代 EUV设备的必胜决心。巨头导入 EUV的进程不一,设备需求能延续 3年以上。全球半导体产业在进入 7nm制程世代之后,可望是台积电、三星电子、格罗方德三强对决局面。 2012年,三星和台积电分别向阿斯麦注资 5亿和 15亿欧元,以加强与公司的战略合作;

  根据调研机构 Anandtech所汇集的各家路线图,台积电是最快到达 7nm工艺制程的厂商。台积电对外宣布,针对高速运算市场,量身打造人工智能与数据分析专用的平台,预估 2018年 H1就具备 7nm量产能力;紧接着在 2019年的第二代 7nm,导入阿斯麦的 EUV设备,并有望同年试产 5nm制程产品。其他厂家方面,三星则决定在 2018年第一代的 7nm就直接让 EUV技术上线;格罗方德则承袭IBM技术自行研发 7纳米,同样预计 2018年下半年量产,但第一代是使用DUV,而导入 EUV需要到 2019年。 Intel则因成本考虑,要到 2021年才开始用 7nm工艺接替 10nm制程。

   一文看懂asml光刻机工作原理及基本构造

  主要晶圆厂商的先进制程路线

  专注光刻扩大技术优势,塑造刚性客户需求

  公司技术优势明显,保持行业领先。公司在 2013年首次推出极紫外光设备 NXE 3300B,

  但是精度与效率不具备 10nm以下制程的生产效益;直到 2016年后的 3400B,光学与机电系统的技术有所突破,极紫外光源的波长缩短至 13nm,每小时处理晶圆 125片,或每天可1500片;连续 4周的平均生产良率可达 80%,兼具高生产率与高精度。随着芯片尺寸不断缩小, EUV设备未形成行业刚需,目前全球一线的逻辑晶圆与存储晶圆厂商,均采购阿斯麦 TWINSCAN机型,其中英特尔、三星、台积电三大巨头,纷纷入股阿斯麦,以谋求其高端光刻设备共同开发与优先采购权。

   一文看懂asml光刻机工作原理及基本构造

  EUV光刻机NXE3400B的构造示意图

  由于公司的浸没式 EUV光刻设备,能帮助客户实行量产 7nm和 5nm的晶圆制程,并达到 2.5纳米的迭对精度,未来出货量可观。 2017年上半年,公司售出 2台 EUV设备, Q3单季度倍增到 4台;预计 Q4还有 6台交付,带来 3亿欧元单季收入,计划 2018与 19年均可出售超过 20台。

   一文看懂asml光刻机工作原理及基本构造

  阿斯麦 EUV光刻设备 TWINSCAN NXE系列

  整体而言,公司在 2017Q3单季营收 18亿欧元,前三大产品线为ArF(63%), EUV(21%), KrF(10%)。 3D NAND客户对于 KrF干式光刻系统的需求持续升高,目前相关设备的未出货订单已累积超过 20台,显示出公司由中端到高端的产品均居市场领导地位。

   一文看懂asml光刻机工作原理及基本构造

匹配到与"光刻机原理:一文看懂asml光刻机工作原理及基本构造"有关的[卷积运算:一文让你看懂转置卷积(反卷积,分数卷积),非常详细]

精选的卷积运算:一文让你看懂转置卷积(反卷积,分数卷积),非常详细


者:Naoki Shibuya

编译:ronghuaiyang

导读

    如果你听说过转置卷积并对它的实际含义感到困惑,这篇文章就是为你写的

如果你听说过转置卷积并对它的实际含义感到困惑,这篇文章就是为你写的。

上采样的需求

当我们使用神经网络来生成图像的时候,通常需要从低分辨率的图像上采样成高分辨率的图像。

有很多的方法来实现上采样的操作:

  • 最近邻插值

  • 双线性插值

  • 双三次插值

这些方法都涉及插值,需要在确定网络结构时进行选择。它就像一个手工的特征工程,网络对此一无所知。

为什么用转置卷积?

如果我们想要我们的网络学习到如何最优化的进行上采样,我们可以使用转置卷积。它没有使用预先定义好的插值方法,具有可学习的参数。

理解转置卷积的概念非常有用,因为在一些重要的论文和工程都都会用到,比如:

  • 在DCGAN中,生成器使用随机采样的值来生成全尺寸的图像。

  • 在语义分割中,在编码阶段使用卷积层来抽取特征,然后在解码阶段,恢复原始的图像尺寸,对原始图像的每一个像素进行分类。

转置卷积也称为:

  • 分数步长的卷积

  • 反卷积

在文中,我们只会使用反卷积,但是你需要在其他的文章中注意一下其他的名字。

卷积操作

我们用一个简单的例子来解释一下卷积是怎么工作的。假设我们有一个4x4的矩阵,需要在上面使用一个3x3的卷积核进行卷积操作,不做padding,步长为1。如下面所示,输出为2x2的矩阵。

卷积操作

卷积运算计算输入矩阵和核矩阵之间的元素乘积的和。因为我们没有padding,步长为1,我们只能做4次。因此,输出矩阵是2x2的 。

对应元素相乘再求和

这种卷积运算的一个重要特点是输入值和输出值之间存在位置连通性。

例如,输入矩阵的左上角值影响输出矩阵的左上角值。

更具体地说,3x3卷积核用于连接输入矩阵中的9个值和输出矩阵中的1个值。卷积运算形成多对一关系。让我们记住这一点,因为我们以后需要它。

反过来

现在,假设我们想要反过来操作。我们想把一个矩阵中的1个值和另一个矩阵中的9个值联系起来。这是一对多的关系。这就像是卷积运算的反运算,它是转置卷积的核心思想。

例如,我们上采样一个2x2矩阵到一个4x4矩阵。这个操作维护了一个1到9的关系。

卷积运算反过来

但是我们怎么来进行这样的操作呢?

为了讨论如何进行这个操作,我们需要定义卷积矩阵转置卷积矩阵

卷积矩阵

我们可以用矩阵来表示卷积运算。它只是一个重新排列的卷积核矩阵,这样我们就可以用矩阵乘法来进行卷积运算了。

我们将3x3卷积核重新排列为4x16的矩阵如下:

这就是卷积矩阵。每一行定义一个卷积运算。如果你看不懂上面的图的话,下面的图表可能会有所帮助。卷积矩阵的每一行只是一个重新排列的卷积核矩阵,在不同的地方用零来填充。

为了使用这个矩阵,我们把输入矩阵 (4x4)拉平成一个列向量 (16x1)。

拉平了的输入矩阵

我们可以将4x16卷积矩阵与16x1输入矩阵(16维列向量)相乘。

输出的4x1矩阵可以被reshape成2x2的矩阵,得到与之前相同的结果。

总之,卷积矩阵就是对卷积核权值重新排列的矩阵,卷积运算可以通过使用卷积矩阵表示。

那又怎样呢?

重点是使用卷积矩阵,你可以从16 (4x4)到4 (2x2)因为卷积矩阵是4x16。然后,如果你有一个16x4的矩阵,你可以从4 (2x2)到16 (4x4)。

是不是有点懵逼?

请继续读下去。

转置卷积矩阵

我们想要从4 (2x2)到16 (4x4),所以,我们使用一个16x4的矩阵。但是,还有一样,我们要得到一个1到9的关系。

假设我们将卷积矩阵C (4x16)转置到C.T (16x4)。我们可以对C用一个列向量(4x1)使用矩阵乘法,生成一个输出矩阵(16x1)。转置矩阵将1个值与输出中的9个值连接起来。

使用矩阵乘法来做卷积

将输出reshape成4x4。

我们刚刚将一个较小的矩阵(2x2)上采样到一个较大的矩阵(4x4)。由于转置卷积重新排列权值的方式,它保持了1到9的关系。

注意:矩阵中的实际权值不一定来自原始卷积矩阵。重要的是权重的排布是由卷积矩阵的转置得来的。

总结

转置卷积运算与普通卷积形成相同的连通性,但方向是反向的。

我们可以用它来进行上采样。此外,转置卷积的权值是可以学习的。所以我们不需要一个预定义的插值方法。

尽管它被称为转置卷积,但这并不意味着我们取某个已有的卷积矩阵并使用转置后的版本。重点是,与标准卷积矩阵(一对多关联而不是多对一关联)相比,输入和输出之间的关联是以反向的方式处理的。

因此,转置卷积不是卷积。但是我们可以用卷积来模拟转置卷积。我们通过在输入矩阵的值之间加零来对输入进行上采样,这样直接卷积就会产生与转置卷积相同的效果。你可能会发现一些文章用这种方式解释了转置卷积。但是,由于需要在卷积之前对输入进行上采样,所以效率较低。

注意事项:转置卷积是生成图像中棋盘伪影的原因。本文推荐上采样操作(即插值的方法),然后进行卷积运算来减少这些问题。如果你的主要目标是生成没有这些伪影的图像,那么阅读本文以了解更多信息是值得的。

END

英文原文:https://towardsdatascience.com/up-sampling-with-transposed-convolution-9ae4f2df52d0

上一篇:mysql条件查询
下一篇:没有了
其他人还看了
  • 基本乐理:音及音名

  • 卓越绩效管理:卓越绩效管理的基本理念之顾客驱动的卓越

  • 易净康的工作原理及功效说明

  • 壁挂炉原理:燃气壁挂炉维修:壁挂炉基本原理及工作流程详解

  • 老年健康管理:国家基本公共卫生服务项目――老年人健康管理

  • 冰箱工作原理:详解冰箱的工作原理与制冷系统流程图

  • 维纳滤波:Wiener维纳滤波基本原理及其算法实现

  • 代购代理:智商40以上都能看懂的代购入门

  • 灭蚊灯有效吗 灭蚊灯的工作原理及注意事项

  • 工作原理:汽车工作原理图,你每天开车都知道吗?

  • 海外支付:一文看懂为什么国外没有支付宝和微信支付

  • 汽车工作原理:汽车工作原理图,你每天开车都知道吗?

  • 皮肤的构造:皮肤基本结构解析

  • 渐变玻璃:华为、OPPO争相采用,一文看懂3D玻璃渐变工艺!

  • zf变速箱: 一文看懂奔驰、ZF、通用 9 速自动变速器有何优劣!

  • 投影机原理: 原理篇 百元造出的投影机你敢买吗

  • 万能险、分红险、投连险那么复杂,一文教你看懂理财险的套路

  • 一文看懂财报中的非常损益

  • 快递公司招商: 一文看懂快递企业都是如何玩转快运

  • 快运公司: 一文看懂快递企业都是如何玩转快运

  • 直升机原理:直升机为什么有两个螺旋桨?直升机螺旋桨工作原理是

  • ivd行业: 一文看懂 IVD 行业

  • 智能投顾: 一文看懂 | 智能投顾基金组合与 FOF 产品的异同

  • 倍增学原理:几何倍增学原理,看懂的人容易成功!

  • 300639: 一文看懂 IVD 行业

  • 光刻机原理:一文看懂asml光刻机工作原理及基本构造相关文章